CWI-collega's

A lewsurely traveling salesman tour
through several facets of cuts

Monique Laurent
CWI & Tilburg University

Foreword

Beste Jan Karel,

Dit is een kort verhaal over sneden (cuts) in grafen, als afscheidskado en dank voor al
je werk en inzet voor het CWI. Hopelijk heb jij voortaan meer tijd en kunnen we vaker
van je inzicht over allerlei ‘traveling salesman’ vraagstukken genieten!

Veel dank en ik wens je veel plezier in je nieuwe leven na de CWI directie.

Prologue

Cuts in graphs are very basic objects. However, they often illustrate in a beautiful way
several recent developments in combinatorial optimization, and they have fascinating con-
nections to other mathematical areas like metric theory, distance geometry, combinatorial
matrix theory. My co-authored book Geometry of Cuts and Metrics which just appeared
when I joined CWI in 1997, covers some of them. [As an aside, this earned me my first
experience with the generous and thoughtful work environment at CWI!]

Cuts have numerous applications,
for example, to cluster analysis (clus-
ter a set of data into groups of most
similar objects), to statistical physics
(minimize the energy of spin glass sys-
tems), or to VLSI design (minimize
the number of ‘vias’ needed to route
nets on several layers in chip design).
My focus here will be to travel from
a bird-eye perspective through some
chosen mathematical questions and
results where cuts play a central role. This is not a scientific paper, there is no pretention
in completeness, and I will mostly omit to say precisely who has done what.
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Complexity of max-cut

Given a graph G = (V = [n], E), a cut is
the set of edges that are ‘cut’ by some par-
tition of the nodes into two groups. Say
(S,V'\ S) is such a partition, then the cor-
responding cut consists of all edges ij € £
with i € S and j € S (or conversely).

If weights w € RF are assigned to the
edges of G, then the maz-cut problem asks
to find a cut whose weight >, ;o wi; is
maximum. Two remarks are in order about
the complexity of max-cut.

First, if all weights are non-negative and, instead of a maximum cut, one wants a mini-
mum weight non-empty cut, then the problem is polynomial time solvable, using maximum
flow techniques and Fulkerson’s celebrated max-flow min-cut theorem.

On the other hand, max-cut is NP-hard, even if all weights are equal to 1 and the
graph is cubic. Karp [1972] proposed the following reduction of max-cut from the partition

problem: Given integers ai,...,a, € N, define the edge weights w;; = a;a; Vi,j. Then
the weight of a cut is (3_,c5ai)(Xigsai) < ey a;)?/4, with equality if and only if
Yoies @ = (Diev @i)/2, ie., the sequence a1, ..., a, can be partitioned.

However, max-cut can be solved in polynomial time over the class of planar graphs;
working with the planar dual graph, the problem can indeed be reduced to shortest path
combined with maximum weight matching computations. Polynomial time solvability ex-
tends to the larger class of graphs which do not contain a K5 minor.

Cut polyhedra

Define the cut polytope CUTY as the convex hull of the incidence vectors of all cuts in the
complete graph K. Thus solving max-cut amounts to linear optimization over the cut
polytope. Define analogously the cut cone CUT,, as the conic hull of the incidence vectors
of all cuts. A beautiful symmetry property is that all the facets of the cut polytope can
derived by a simple ‘switching’ operation from the facets of the cut cone (where ‘switching’
means changing signs along a cut). Hence it suffices to find the facets passing through the
origin... Well, as max-cut is NP-hard, this remains probably a hopeless task! Nevertheless
many classes of facets are known. In particular, facets arise within the class of hypermetric
inequalities mentioned in (2) below. It is known that the subclass of triangle inequalities
(3) (in fact, their projections) suffices to describe the cut cone for graphs with no K5 minor.
Gaining good information about the facets of cut polyhedra is important for branch-and-
cut type algorithms for max-cut, but it is also relevant to other fields, including ¢;-metrics,
or the study of Bell inequalities in quantum information theory, as mentioned below.
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Cuts and /;-metrics

Any cut corresponds to a very simple distance on V:
if two points of V are cut they are at distance 1 and
otherwise they are at distance 0. Call a distance d ¢;-
realizable if there exist vectors uq,...,u, in some space
R* satisfying di; = ||lu; — vjl1 V4,j. Clearly, any cut
corresponds to an fj-realizable distance (then the w;’s
can even be chosen within {0,1}) and one can show
that the distances that are ¢;-realizable are precisely
the members of the cut cone CUT,,. Thus, the hardness
of max-cut implies that testing ¢;-realizability is also a
hard problem.

In comparison, testing fs-realizability can be done J
in polynomial time - using semidefinite programming. Tye octahedron: The unit ball
Indeed, there exist vectors uy, ..., u, € RF (k> 1) such of the ¢;-norm in 3D
that [|u; — ujll2 = di; Vi, j if and only if there exists
a positive semidefinite matrix X satisfying the linear
conditions:
Xii + ij — 2Xij = d?j Vi, j € [n] (1)

Nevertheless the above characterization of £1-metrics as members of the cut cone implies
that any valid inequality for the cut cone gives a necessary condition for ¢;-realizability.
Among the many known classes of valid inequalities, the class of hypermetric inequalities
is of particular interest. Given integers by,...,b, € Z with >, b; = 1, the corresponding
hypermetric inequality is

> bibjdi; <0. (2)
1<i<j<n
For instance, for b; = b; = 1 = —b;, and all other entries equal to 0, we get the triangle

inequalities, claiming that d is a metric:
dij < dig + dji, (3)
(thus motivating the name hypermetric). For b = (1,1,1,—-1,-1,0,...,0), we get the
pentagonal inequality:
di2 + dig + dog + dgs — > dij <0. (4)
i€{1,2,3},j€{4,5}

Although there are infinitely many hypermetric inequalities, the cone they define can yet
be shown to be a polyhedral cone. This result is based on a deep connection between
hypermetrics and geometry of numbers (Voronoi and Delaunay polytopes in lattices).
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Semidefinite approximation for max-cut

Assume all edge weights are non-negative. Here is a
simple random algorithm to get a good cut: Assign the
nodes independently, with probability 1/2, to either side
of the cut. Then an edge is cut with probability 1/2 and
one gets a cut whose expected weight is half the total
weight of edges, and thus at least half max-cut.

How to do better?

Goemans and Williamson [1995] introduced an in-
genious construction for constructing a better approxi-
mate cut, based on semidefinite programming combined with a clever ‘random hyperplane
rounding’ technique:

1. Find unit vectors vy, ..., v, € R" maximizing 37 pwi;(1 — vl v;).
2. Pick a random hyperplane, say with normal r.

3. This hyperplane induces a partition of the space, and thus a cut, depending on the
. f T,,.
sign of r* v;.

The beautiful property of this construction is that the expected weight of the obtained cut
is at least 0.878 times max-cut.

The key fact in the analysis is that the probability that edge ij is cut depends only on
the angle between vectors v;, v;, namely it is equal to arccos(v} v;)/m. Hence the expected
weight of the cut is equal to

arccos(vi vj) 1 —vfv; 2 arccosv]v;
E Wy - E Wis d

> max-cut agw,

ij ij T
T 2 T 1—vlwv;
ijEE ijEE 1 —viv;
=SDP 2eGw
¥
where agw := ~ (0.878.

min ——
9el0,x] ™1 — cos V)
Indeed, the value SDP is at least max-cut. To see it, note that one can formulate
max-cut as the following integer quadratic problem:
max-cut = max Z wii(1 — xyx5)/2 st @y, ...,z € {£1}. (5)
ijeE
Relaxing the condition: z; € {41} by the condition: v; lies in the unit sphere S"~!, we

get the following ‘vector relaxation’ of max-cut:

SDP := max Z wij(1—vlv)/2 st. vi,...,v, € S"7L (6)
ijeE

50



CWI-collega's

Letting X = (vI'v;) denote the Gram matrix of the v;’s, (6) can be reformulated as the
following semidefinite program:

SDP = max Y wi;(1— X;5)/2 st. Xy =1Vi, X =0. (7)
ijel

Thus the value SDP, together with optimal vectors v;’s for (6), can be computed in poly-
nomial time (to arbitrary precision) using, e.g., interior point algorithms.

The Goemans-Williamson approximation agw ~ 0.878 improves the trivial 1/2 ap-
proximation. As of today, this remains the best known polynomial-time approximation
guarantee for max-cut. Whether the GW approximation can be improved is intimately
related to the Unique Games conjecture of Khot [2002] in complexity theory. Namely, if
the Unique Games conjecture holds, then the Goemans-Williamson approximation is best
possible.

A trigonometric puzzle about angles of vectors

Let vy,...,v, be given vectors on the unit sphere S~ A
natural question is what are the linear conditions satisfied by
their angles ¥;; (= arccos vl v;).

A basic well known geometric fact in 3D is that the pair-
wise angles of three vectors vy, vg, v3 satisfy:

Y12 < V13 + Va3, (8)
Y13 < Y12 + Va3,
Y93 < V12 + V13,

Y12 + 913 + Yoz < 2. (9)

But, what about the pairwise angles of five vectors ?

A spherical triangle: . )
Is it true that they satisfy:

a+pB+v<2n
V12 + g + Vo3 + Ua5 < > Ui (10)
i€{1,2,3},j€{4,5}
as well as
d Wi <6n? (11)
1<i<j<5
Well, the answer is yes and the above ‘random hyperplane rounding’ argument permits to
show this.
Indeed, say we have an inequality Zi]» wijdi; < wo, valid for CUTY, and a collection
of unit vectors vy,...,v,. As in steps 2-3 of the Goemans-Williamson procedure described
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above, pick a random hyperplane and consider the corresponding random cut, whose ex-
pected weight is equal to Zij wi;¥i;/7, and is at most the maximum value wy. This shows
that Zij w;j¥i; < wom holds for the pairwise angles of unit vectors. As an illustration,
relation (8) corresponds to the triangle inequality (3), relation (10) corresponds to the
pentagonal inequality (4), and (11) corresponds to the switched inequality, claiming that
a cut in K5 has at most six edges.

Spectrahedra and the elliptope

While the feasible region of a linear program is a polyhe-
dron, the term spectrahedron has been coined for the fea-
sible region of a semidefinite program. In particular, the
feasible region of the semidefinite relaxation (7) of max-
cut is a spectrahedron, called the elliptope and denoted as
En.

The elliptope &, consists of all n x n positive semidef-
inite matrices with diagonal entries one. Such matrices
correspond to correlation matrices in statistics and partly
for this reason their geometric properties have been much
studied. For instance, it is known that a correlation ma-
trix which is an extreme point of the elliptope &, has rank
r satisfying (“2“1) < n. It is also known that the elliptope, s
although it is a non-polyhedral convex set, does have poly- Fig. 1: The elliptope &3
hedral faces, some of them being inherited from the cut
polytope. The possible dimensions for the polyhedral faces of £, have been characterized.

By construction, the elliptope &, is a convex relaxation of the cut polytope CUTE. For
n = 3, there are four cuts in K3 and the cut polytope CUTY is a simplex in R3. Fig. 1
shows the elliptope £;. Notice that it has four ‘corners’, corresponding to the four cuts.
Also, &3 can be seen as the geometric shape obtained by ‘inflating’ the cut polytope while
keeping its skeleton rigid (which earns & its alternative name: ‘the pillow’).

A basic natural question is to understand what are the characteristic properties of
spectrahedra. By definition, a spectrahedron K is the solution set of a semidefinite pro-
gram. That is, K can be written as the set of solutions z € R" of a so-called linear matriz
inequality (LMI):

A(z) :=Ap+ 2141 + ... + 2,4, = 0. (12)

Clearly, any spectrahedron K must be convex, and a basic closed semi-algebraic set,
which means that K can be described by finitely many polynomial inequalities (indeed,
simply write that the principal minors of the matrix A(z) must be non-negative). A deep
algebraic result of Helton and Vinnikov [2006] characterizes spectrahedra in R? (in terms
of convex rigidity), but a characterization is not known in dimension n > 3.
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The next figure shows another spectrahedron: the set 73 of all Toeplitz matrices (i.e.,
with identical entries on each diagonal) in the elliptope &4, together with its dual body.
Alternatively, 7y is the convex hull of the trigonometric curve (cos(t), cos(2t), cos(3t)) for
teR.

For the purpose of optimization one is also interested in working with projections of
spectrahedra, which corresponds to lifting the problem in higher dimension. Call a set K
SDP representable if it can be obtained as the projection of a spectrahedron. That is, there
is an LMI:

Az, z) = Ao+ 21 A1 + ...+ 2pAn + 21B1 + ... + 2 Bpy,
such that € K if and only if A(z,z) > 0 for some z € R™. Necessarily &K must be
convex and semi-algebraic, but again no full characterization is known. Characterizing
SDP representable sets is a major open problem in the field of semidefinite programming
and convex algebraic optimization.

As an illustration, the unit ball in R™ of the fo-norm is a spectrahedron, as

- 1 27
2 —
{xeR”| .Elxi<1}{xeR”| (x In> to}.
=

In optimization terms, optimizing over the second order cone, also known as the Lorentz

cone or the ice-cream cone: {(xo, z) € RV o > /30, xf}, can be cast as an instance
of semidefinite programming. On the other hand, the unit ball in R? of the £4-norm:

K ={(z,y) eR*|a" +y' <1},

is not a spectrahedron (since it is not rigidly convex), but it is SDP representable. Indeed K
can be realized as the projection of a spectrahedron by adding two more variables. Namely,
(x,y) € K if and only if there exists (u,v) € R? satisfying 2 < u, y*> < v, u? +0? < 1,
which can equivalently be formulated using the LMI’s:

1z 1 1 v v
(m u)t&( 5)507 w1 0]=o0.
Y v 0 1
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Distance geometry and matrix completions

The distance geometry problem can be stated as follows:
Given a graph G = (V,E) and a (partial) set of distances
d = (dij)ijer, find (if it exists) a realization of d in R*, ie.,
find vectors ui,...,u, € R¥ such that dij = |Jui — ujl|2 for
all ij € E. This contains, for instance, the molecular confor-
mation problem in molecular chemistry, where one wants to
reconstruct the 3D structure of a molecule from the knowledge
of certain interatomic distances, or sensor network localiza-
tion problems.

If the dimension % is fixed and part of the input, then the problem is NP-hard (already
for k = 1, where there is an easy reduction from the partition problem). However, the
exact complexity of deciding existence of an fo-realization in any dimension k£ > 1 is not
known. Note that this amounts to deciding whether the semidefinite program:

Xii+ Xj;—2X;;=d; (ij€E), X =0

(already encountered in (1) above) has a feasible solution. However, the exact complexity
of deciding feasibility of a semidefinite program is not known. Let us make a brief excursion
to the complexity of semidefinite programming.

Consider the problem of testing feasibility of the LMI (12), where Ay, ..., A, are given
integer symmetric matrices. Clearly, this problem belongs to NP in the real number model
of computation, since one can test whether a matrix is positive semidefinite in polynomial
time - using Gaussian elimination. However, the problem is not known to be in NP in the
bit number model of complezity (although Ramana [1997] could show that it belongs to NP
if and only if it belongs to co-NP - using a clever extended duality theory). It is indeed
not clear how to come up with a short certificate. For instance, the following semidefinite

program:
2 r 2
- -
(I 1) z 0, (2 2x> =0

admits a unique érrational solution: z = v/2. Deciding the complexity status of testing fea-
sibility of a semidefinite program is a major open problem. On the positive side, Khachiyan
and Porkolab [1997] have shown that one can test existence of a rational solution of the
LMI (12) in polynomial time when fizing the number n of variables, thus extending the
result of Lenstra [1983] about polynomial time solvability of integer LP in fixed dimension
to SDP.

On the positive side, the distance geometry problem can be solved in polynomial time
for the class of chordal graphs, and for the class of graphs with no K4 minor. The latter
result relies on the following observation. Clearly, if d has an ¢o-realization then it can be
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completed to a metric d on V; moreover one can test in polynomial time whether such a
metric completion exists. It turns out that existence of a metric completion is also sufficient
to ensure existence of an f»-realization in the case when the graph has no K4 minor. More
strongly, if d has an fs-realization, then it has a metric completion d which satisfies all
valid inequalities for the cut cone CUT,,. (In sophisticated terms, s-realizability implies
{1-realizability.)

Two examples of distances with no ¢s-realization are shown in Fig. 2. As a first example,
consider the case where G = (Cy is a circuit of length 4 and d satisfies: dis = dogz = 1,
ds4 = 3 and dy14 = 0. Then d cannot have an ¢s-realization since d has no metric completion
CZ, for otherwise one would have diz < dia + dog = 2 and dgq < dis + dy3 implies diz > 3,
yielding a contradiction.

As a second example, consider the distance d defined on the graph G = K4 by di2 =
di3 = dig = 1 and dog = dog = d3qs = 2. Then d is a metric (and moreover d belongs
to CUTy, since all the facets of CUT,4 come from triangle inequalities). However d does
not have an f¢o-realization; for otherwise one could find vectors u; = 0, ug, us, u4 satisfying
luil = 1 (i = 2,3,4) and |Ju; — uj|| = 2, e, ulu; = =1 (i # j € {3,4}), clearly a
contradiction.

Fig. 2: Two distances with no fs-realization

The distance geometry problem is closely related to the PSD matrixz completion problem:
Decide whether a partially specified matrix can be completed to a positive semidefinite
matrix. In other words, given a € RP, is it possible to find a matrix X > 0 such that
Xy =1 VieVand X;; = ay; Vij € E?7 That is, decide whether a belongs to the projection
E(G) of the elliptope &, onto the edge subspace R”. Again the exact complexity is not
known. An obvious necessary condition for a € £(G) is that the vector arccos(a) € [0, 7]
can be completed to a spherical distance. More strongly, following our earlier discussion
on ‘angles of vectors’, this spherical distance should satisfy all valid inequalities for the cut
polytope. As an illustration, the following partial matrix:

1 1 7?7 -1

1 11 7

7 11 1
-1 7 1 1

cannot be completed to a positive semidefinite matrix. This can be checked directly.
Alternatively observe that assigning values (0,0,0,7) (= arccos(1,1,1,—1)) to the edges
of Cy gives a partial distance that cannot be completed to a spherical distance.
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Grothendieck inequalities

Given a graph G = (V = [n], E) and edge weights w € RF consider the quadratic integer
problem:
IP(w) := max Wi T 13
()= s, 3w (13)
and its semidefinite relaxation:
SDP(w) :=  max Z wijud uj. (14)
ijel

w; unit vectors <

Clearly, IP(w) < SDP(w). Alon et al. [2006] showed the existence of a constant K(G)
such that
SDP(w) < K(G) TP(w) Yw € RE.

Note that the program (13) corresponds to optimizing over the cut polytope CUT®(G),
while (14) corresponds to optimizing over the elliptope £(G) (the respective projections of
CUTY and &, onto the edge subspace RF). Thus the constant K (G) can be viewed as the
integrality gap of the SDP relaxation or, in geometric terms, as the smallest dilation A for
which &(G) C A CUT(G). For instance, K(G) = 3/2 for G = K3 (recall the picture of
E(K3) in Fig. 1).

The constant K (G) is known as the
Grothendieck constant of the graph G. Indeed,
this concept goes back to work of Grothendieck!
[1953] who showed that K(G) is universally
bounded for bipartite graphs. More precisely
it is known that

1.6769 < sup K(G) < 1.8782.
G bipartite

These results were shown in the context of op-
erator norms in functional analysis and can be
used to design approximation algorithms, for in-
stance, for the problem of computing the cut
norm of a matrix.

More generally, Alon et al. [2006] show the
existence of two absolute constants C,C" > 0
such that

Clogw(G) < K(G) < C'log¥(G),

Alexander Grothendieck

! Grothendieck left the academic world since the 1980’s and is now said to live in reclusion in southern
France. In January 2010, he wrote a “Declaration d’intention de non-publication”, where he asks that none
of his work should be reproduced in whole or in part, and even further that libraries containing such copies
of his work should remove them.
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where w(G) is the largest size of a clique in G and ¥(G) is the celebrated Lovdsz theta
number, known to be upper bounded by x(G), the coloring number of G. As x(G) = 2
when G is a bipartite graph, this implies again Grothendieck’s result, claiming that the
Grothendieck constant is universally bounded for bipartite graphs.

Interest in the Grothendieck constant comes, in particular, from its relevance to ap-
proximation algorithms in complexity theory, as well as to non-local games in quantum
information theory, briefly discussed below.

Bell inequalities in quantum information

A non-local game G = (7, V') involves three
parties: the referee and two players, Al-
ice and Bob. Data include a probabil-
ity 7 : S xT — [0,1] and a predicate
V:AxBxSxT —{0,1} giving the rules
of the game. Here, A, B, S,T are given fi-
nite sets, S,7T are the sets of ‘questions’
sent by the referee to Alice and Bob and
A, B are the sets of ‘answers’ of Alice and
Bob, respectively. The players and the ref-
eree know m and V. Before the start of the
game Alice and Bob may decide on a strat-
egy to play the game, but once the game
has started they are not allowed to com-
municate.
The game goes as follows:

1. The referee picks a pair of questions
(s,t) € S x T according to the ditri-
bution 7 and sends question s to Alice and question ¢ to Bob.

2. Alice selects her answer a € A and Bob selects his answer b € B.

The players win the game if V(a,b|s,t) = 1 and loose otherwise. The aim of the players
is to choose their own strategy so as to maximize their probability of winning the game.
This probability can be computed with the following optimization problem:

max Z m(s,t) Z V(a,bls,t)P(a,b|s,t) (15)

(s,t)ESXT (a,b)€AX B

where P corresponds to all possible probability profiles, depending on the strategies adopted
by the players.
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In the classical deterministic case, the players simply choose a map a : S — A for
Alice and b : T' — B for Bob. The corresponding feasible probability profiles then form
a polytope, whose bounding faces are supported by the so-called Bell inequalities. The
optimal value of the corresponding optimization problem (15), called the classical value of
the game, can be computed via LP.

In the non-classical setting, the players share an entangled strategy. It consists of a
quantum system {A? | a € A, s € S} of bounded operators on a Hilbert space H 4 for Alice,
a quantum system {B? | b € B,t € T} of bounded operators on a Hilbert space Hp for
Bob, and a shared entangled state ¥ which is a unit vector in H4 ® Hg. The operators A
of Alice are required to be Hermitian projectors forming an orthogonal resolution of the
identity, and analogously for the operators BY of Bob; that is,

1. A%AY =5,y A% BYBY =6y Va,d’ € A, Wb,i € B,Vs € S, VteT,
2. 3 en Al =14, g Bl =1p Vs€S,VteT.

Moreover, P(a,bs,t) = (¥, A ® B! U). Hence the quantum value of the game can be
computed via the optimization problem:

max Y w(s,t) > V(a,bls,t)(V, Al @ B ¥), (16)
\IJ’A(SI’Bf s,t a,b

where the maximum is taken over all possible unit vectors ¥ € H4 ® Hp, A? Hermitian
operators on Hy, Bf’ Hermitian operators on Hp satisfying the above conditions 1-2.

In an XOR game, Alice and Bob have two possible answers, i.e., A = B = {0,1}, and
the predicate V(a, b|s, t) depends only on the XOR value a &b of their answers. A classical
result in quantum information theory is the theorem of Tsirelson [1987], showing that the
optimization problem (16) can be reformulated as a semidefinite program, of the form

max Z 7' (s, t)ulv,

us,vt unit vectors seS1eT
after suitably defining 7/(s,t). Note that this problem is of the form (14), where the graph
is bipartite with bipartition (S, 7"). In a nutshell, for XOR games, the classical value of the
game can be cast as an instance of the integer quadratic problem (13), while the quantum
value of the game can be cast as the SDP relaxation (14), both for the case of bipartite
graphs. Hence the Grothendieck’s constant also permits to estimate the ratio between the
classical and quantum values.

Moreover, the set of feasible probability profiles corresponding to classical strategies
form a polytope, closely related to the cut polytope of the complete bipartite graph. In
other words, Bell inequalities can be interpreted as valid inequalities for the cut poly-
tope. The maximum violation of a Bell inequality that can be obtained when considering
quantum strategies can be computed via semidefinite programming.
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For general non-local games the program (16) can be reformulated as a polynomial
optimization problem with non-commutative variables which can then be approximated by
a hierarchy of semidefinite programs. This relies on a recent extension of the techniques
developed by Lasserre and Parrilo around 2000 for classical (commutative) polynomial
optimization problems, based on sums of squares of polynomials and the dual theory of
moments.
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